

CENTRO UNIVERSITÁRIO DE BRASÍLIA – UniCEUB FACULDADE DE CIÊNCIAS DA EDUCAÇÃO E DA SAÚDE – FACES PROGRAMA DE INICIAÇÃO CIENTÍFICA

JOÃO PAULO ROMUALDO ALARCÃO BERNARDES SARAH MARIA DA SILVA NAPOLEÃO

AVALIAÇÃO DA ATIVIDADE ANTINEOPLÁSICA E ANTIPROLIFERATIVA DE EXTRATOS DE PLANTAS SOBRE TUMOR MAMÁRIO DE LINHAGEM 4T1.

JOÃO PAULO ROMUALDO ALARCÃO BERNARDES SARAH MARIA DA SILVA NAPOLEÃO

AVALIAÇÃO DA ATIVIDADE ANTINEOPLÁSICA E ANTIPROLIFERATIVA DE EXTRATOS DE PLANTAS SOBRE TUMOR MAMÁRIO DE LINHAGEM 4T1.

Relatório final de pesquisa de Iniciação Científica apresentado à Assessoria de Pós-Graduação e Pesquisa pela Faculdade de Ciências da Educação e da Saúde – FACES

Orientação: Anabele Azevedo Lima

BRASÍLIA-DF 2017

AGRADECIMENTOS

Pela realização deste trabalho, agradecemos a nossa orientadora Dra. Anabele Azevedo Lima, pela oportunidade única de desenvolvimento da pesquisa e pela confiança depositada. Agradecemos imensamente ao nosso co-orientador e professor titular da Universidade de Brasilia Dr. Luis Isamu Kanzaki pela paciência e pelo incentivo de continuarmos o nosso projeto e a nossa jornada na área de pesquisa. Agradecemos ao Dr. Bruno Stéfano Lima Dallago por todo o apoio e materiais emprestados e também ao Técnico Mauricio do Laboratório de microbiologia do HVet - UnB por toda sua prestatividade e carisma em nos ajudar em qualquer situação. Um obrigada especial para os nossos parceiros de laboratório Bernardo, Isadora, Victor, Luana, Sheyla e Rafael pelo suporte técnico e pela companhia por todos esses meses de trabalho. Ao o Dr. Joaquim do laboratório de patologia do Hospital Regional da Asa Norte - HRAN pela doação das cepas bacterianas e por todo o apoio técnico para o nosso projeto. Aos Professores do UniCEUB do curso de Biomedicina pela disponibilidade de nos auxiliar com várias dicas e esclarecer nossas dúvidas mas insignificantes, a todos os colegas do Labocien do UniCEUB e a Dra. Andreia Motoyama da UnB pela doação das células utilizadas em nosso projeto.

AVALIAÇÃO DA ATIVIDADE ANTINEOPLÁSICA E ANTIPROLIFERATIVA DE EXTRATOS DE PLANTAS SOBRE TUMOR MAMÁRIO DE LINHAGEM 4T1

Sarah Maria Da Silva Napoleão- UniCEUB, PIBIC-CNPq, aluna bolsista smnapoleao @gmail.com.br

João Paulo R. A. Bernardes – UniCEUB, PIBIC-CNPq, aluno voluntário jpromualdo0 @gmail.com

Anabele Azevedo Lima – UniCEUB, professora orientadora

Anabele.lima @uniceub.br

Bruno Stéfano Lima Dallago – UnB, colaborador

dallago @unb.com.br

Luis Isamu Barros Kanzaki- UnB, professor orientador colaborador kanzaki@unb.com

Uma alternativa terapêutica promissora, mas ainda incipiente, para o tratamento de tumores mamários é a utilização de plantas medicinais e de extratos vegetais bioativos. Nesse sentido, este projeto tem por objetivo avaliar o potencial terapêutico dos extratos de plantas pertencentes às famílias botânicas Fabaceae, Rubiaceae, Arecaceae. Para tanto, foram realizados testes in vitro para determinar a citotoxicidade, o potencial antineoplásico e antiproliferativo, além de possível atividade antimicrobiana. Cultivos celulares de linhagem primária leucocítica, de linhagem contínua HUT-78 e de células de tumor mamário da linhagem 4T1 (para os testes de eficácia e mecanismos efetores) foram submetidos a tratamento com 3 diferentes concentrações de cada extrato de planta, em padrão de ensaio em triplicata. A capacidade proliferativa foi avaliada através de contagens manuais com o uso da câmara de Neubauer. A visualização morfológica se deu pelo uso da câmara de Neubauer e o corante Trypan blue. Foram realizadas análises estatísticas quanto ao crescimento padrão das células de linhagem primária e sua resposta mediante o tratamento com os extratos. As células da linhagem 4T1 foram tripsinizadas, tratadas e, posteriormente, as atividades citotóxicas foram analisadas com o uso do kit The CytoTox-Glo™, um ensaio enzimático luminescente, que permite mensurar o número de células mortas em uma população celular previamente cultivada, através da atividade de uma protease distinta, com um peptídeo luminescente que identifica e sinaliza principalmente a integridade da membrana celular (determinando se a morte celular ocorreu por necrose ou apoptose). Comprovou-se a atividade antineoplásica/antiproliferativa e determinou-se a concentração ideal, qual seja, a concentração minimamente citotóxica *in vitro*, mas completamente eficaz contra as células neoplásicas. Foram realizados, outrossim, breves ensaios com culturas bacterianas para observar se os extratos, em diferentes concentrações, possuem possível atividade antimicrobiana em diferentes cepas bacterianas.

Palavras-Chave: Bioextrato, Câncer, Mama, Planta medicinal

SUMÁRIO

1.INTRODUÇAO	7
2.FUNDAMENTAÇÃO TEÓRICA	8
3.MATERIAIS E MÉTODOS	10
3.1 Obtenção dos extratos brutos	10
3.2 Cultivo Celular	10
3.3 Tratamento com extratos	11
3.4 Viabilidade Celular	11
3.5 Manutenção das células 4T1	12
3.6 Ensaio morfológico para células 4T1	12
3.7 Teste de Citotoxicidade	12
3.8 Análise Estatística	13
3.9 Ensaio Bacteriano	14
4. RESULTADOS E DISCUSSÃO	16
5. CONSIDERAÇÕES FINAIS	38
6. REFERÊNCIAS	39
7. ANEXOS	38

INTRODUÇÃO

De acordo com a Organização Mundial de Saúde (WHO, 2012) a incidência mundial de cânceres cresceu em 20% na última década, alcançando cerca de 22 milhões de novos casos ao ano, dos quais 13 milhões resultam em óbito. Dentre os diferentes tipos de cânceres, o tumor de mama é a neoplasia maligna mais frequentemente diagnosticada em todo o mundo desde os anos 1990. No Brasil, essa doença representa 25% dos casos de câncer e há a estimativa de 57 mil novos casos em 2016 (INCA, 2016).

Os tratamentos convencionais contra o câncer de mama se resumem ao procedimento local (cirurgia e radioterapia) e/ou ao procedimento sistêmico (quimioterapia e hormônioterapia). Esses tratamentos, por sua vez, representam grande prejuízo funcional e baixa seletividade ao tecido tumoral, além de causar imunossupressão e debilidade física (GUARNERI *et al.*, 2004; BROWN *et al.*, 2004; FIRCZUK *et al.*, 2011). Assim, as terapias em desenvolvimento contra o câncer de mama visam minimizar os danos colaterais do tratamento, atuando principalmente de forma mais seletiva sobre as células malignas (MIJAN, 2012; PEIXOTO, 2015).

Uma opção terapêutica bastante promissora, mas ainda incipiente, é a utilização de plantas medicinais e extratos vegetais bioativos. O Brasil, em especial a selva amazônica, possui grande potencial no desenvolvimento de terapias baseadas em extratos vegetais. De acordo com Feeley e Silman (2009), a região amazônica representa 1/3 da biodiversidade do planeta e estima-se que possui mais de 50 mil espécies de plantas com ação medicinal. Apesar de pouco exploradas, as propriedades medicinais dessas plantas têm demonstrado resultados muito animadores. Nas poucas espécies de plantas amazônicas testadas até o momento, foi observado efeito antiviral (DA MATA, 2011), antioxidante (CARNEIRO et al. 2013), anti-inflamatório (QURESHI et al., 2011; KIM et al., 2010) e antimicrobiano (RASOARIVELO et al., 2011), além de efeito citotóxico e antiproliferativo em células neoplásticas cultivadas (YAACOB et al., 2015).

Há muito ainda para ser estudado e vários extratos de plantas devem ser testados quanto à capacidade antiproliferativa, anticarcinogênica, antimicrobiana e antiviral, no intuito de desenvolver terapias contra o câncer de mama que sejam seguras, eficazes e minimamente causadoras de efeitos colaterais. O Objetivo do presente projeto é avaliar o potencial terapêutico de extratos de plantas medicinais, utilizando-se linhas celulares estabelecidas e primárias; além disso, pretende-se avaliar a citotoxicidade *in vitro* de extratos brutos, em diferentes concentrações, e o potencial inibitório de crescimento bacteriano.

2.FUNDAMENTAÇÃO TEÓRICA

O câncer é definido como o crescimento anormal de células que ao formar massas denominadas tumores podem conduzir o indivíduo à morte. Sendo assim, entende-se que, originalmente, estas células modificadas são geradas a partir de um desequilíbrio no organismo, que gera células cancerígenas. A principal característica dessa enfermidade é a perda de controle da proliferação/diferenciação celular e posterior invasão dos órgãos e tecidos. Os tumores podem ser classificados em benignos ou malignos, em virtude de sua natureza autolimitante ou não, ao nível de agressividade e a capacidade de migração pelo organismo (LEMOS, 2016).

O Câncer de mama é o segundo tipo mais frequente de câncer e afeta principalmente as mulheres. Segundo o Instituto Nacional de Câncer (INCA), a mortalidade por esse câncer aumentou progressivamente, de 12,51 óbitos/100.000 mulheres, em 2010, para 12,66, em 2013. Os fatores que predispõem ao câncer de mama estão relacionados a variáveis biológicas (história familiar, idade da menarca e da menopausa e história reprodutiva); sociais (hábitos, atitudes e costumes como, por exemplo, o tabagismo); bem como a determinantes externos ambientais, sociais e culturais, sendo o maior fator de risco, como ocorre com demais neoplasias, o envelhecimento (ALMEIDA, 2016).

A procura por tratamentos alternativos e complementares para o câncer cresceu significativamente nas últimas décadas. Na atualidade, encontrar um tratamento eficaz e com menos efeitos colaterais é considerado um desafio para a medicina. Uma dessas alternativas está no uso de plantas medicinais.

A planta conhecida como medicinal é aquela que apresenta um ou mais princípios ativos que conferem atividade terapêutica. Antigas civilizações já utilizavam plantas como recurso terapêutico popular no combate de diversas doenças. Estudos têm permitido a descoberta de novos princípios ativos e atividades biológicas de extratos, oferecendo melhores possibilidades de encontrar substâncias de interesse terapêutico (SILVIA et al. 2016).

Diversos países têm explorado o uso de plantas como uma alternativa para o tratamento ou para a prevenção do câncer. Essa alternativa leva em conta que a escolha para o tratamento mais compatível do câncer vai depender da localização do tumor, da sua extensão e do tipo. O mais prático é fazer uma associação de

tratamentos, dentre os quais se destacam a cirurgia, a radioterapia e a quimioterapia (OLIVEIRA, 2014).

Abundante na região amazônica, o açaizeiro (*Euterpe oleracea*) é uma palmeira da família *Arecaceae* da qual é produzido o suco conhecido como açaí. A principal relevância do açaí são os elevados teores de antocianinas, uma substância da família dos flavonóides, que conferirem a cor arroxeada para marrom ao açaí e ajudam no processo de combate a oxidação celular. Isso ocorre através do sequestro de radicais como a hidroxila, superóxido e peroxila. Juntamente com outros compostos fenólicos, os flavonoides possuem um grande potencial como agentes terapêuticos em relação a várias doenças crônico-degenerativas, como câncer, diabetes e disfunções cardiovasculares (BANI et al, 2010).

Outra planta muito utilizada como alternativa terapêutica para diversas enfermidades, tais como alergias, artrite, asma, insônia, câncer, depressão, diabetes, má-digestão, hipertensão arterial, e para aumentar a capacidade física é o noni (Morinda citrifolia L.), planta que pertence à família Rubiaceae e cresce extensivamente entre as ilhas do Pacífico. Sua importância e relevância terapêutica é muito conhecida dessas comunidades que a utilizam na medicina tradicional (MENDES, 2014).

O noni possui cerca de 160 compostos fitoquímicos, assim como micronutrientes como glucósidos, compostos fenólicos e alcalóides. Diversos componentes de diferentes polaridades podem contribuir para a atividade antioxidante dos extratos das folhas, do caule, do fruto e das raízes da *Morinda citrifolia*. Entre os componentes com propriedades antioxidantes estão incluídos a xeronina e os flavonoides, que possuem comprovada eficácia contra os radicais livres. A ação quimiopreventiva do suco de noni tem sido comprovada em diversos estudos, que comprovam que ele possui propriedades de natureza antioxidantes capazes de atuar em fases iniciais de vários tipos de câncer (BANI *et al.*, 2010).

3.MATERIAIS E MÉTODOS

- 3.1 Obtenção dos extratos brutos: O extrato BR-51 foi doado pelo Laboratório de Bioprospecção do hospital veterinário da Universidade de Brasília – UnB. O mesmo foi obtido pela equipe da Universidade Federal do Amapá/ Unifasp, em parceria com a Embrapa/AP e a Universidade de Brasília-UnB. A obtenção do extrato bruto BR51 ocorreu por meio de maceração, na qual foram utilizadas 100 gramas da amostra botânica granulada diluída em solventes, em graus diferentes de polaridade; etanol a 95% e hexano (ambos da marca VETEC). As amostras foram mantidas nestes solventes durante 7 dias em temperatura ambiente. Este procedimento foi repetido três vezes, previamente a filtração. Após evaporação do solvente em rotaevaporador (QUIMIS), a 40 Cº sob pressão reduzida. O soluto obtido prosseguiu a secagem em temperatura ambiente e foi armazenado a -20 Cº (Correia et al., 2008; Perfeito et al., 2005). Para obter o extrato de Noni- M.C (Morinda citrifolia) foi utilizado 1 quilo da fruta do M.C, que foi descascada com um bisturi e macerada em um espremedor dentro de 2 beques com gaze como filtro. O suco obtido desse processo foi distribuído em 15 tubos falcons de 14 mL e catalogados. Todo o procedimento foi realizado em ambiente de fluxo laminar. Para a o extrato de açaí-E.O (Euterpe oleracea) foram necessárias 500 gramas de polpa pura de E.O, vindos diretamente do Pará, que foram levadas para o fluxo laminar, onde foram distribuídas em um tubo falcon de 15 mL através de uma seringa de 20 mL, com uma pipeta semi-automatica foram depositados 500 µl em 10 eppendorfs, o extrato foi liofilizado no aparelho SpeedVac.
- **3.2 Cultivo Celular:** Foi utilizado meio RPMI (SIGMA) comercializado em forma liquida como meio de cultivo, que foi suplementado com 10% de soro fetal bovino (SBF) e 1% de antibiótico (penicilina/estreptomicina) sobre o volume total utilizado em forma de regra de 3, para balancear os valores. As linhas celulares primárias foram obtidas através do processo de separação de leucócitos. Foram coletados 20 mL de sangue do paciente JPR em seringa com EDTA. Em fluxo laminar, foram distribuídos os 20 mL de sangue em tubos Falcon de 15 mL com 5 ml de sangue em cada um, além de 5 ml de *histopaque* (SIGMA). Os tubos foram centrifugados a 1600 rpm por 30 minutos em temperatura de 22 Co, em seguida foram levados ao fluxo. O plasma e o *histopaque* foram descartados, juntamente com o precipitado de hemácias, sendo utilizada somente a "nuvem leucocitária" que ficou entre o precipitado de hemácias e o *histopaque*. Depois foram adicionados mais 5ml de meio RPMI à "nuvem

leucocitária" em tubo Falcon, o qual foi centrifugado a 1300 rpm por 10 minutos à temperatura de 22 Cº em tripla repetição. Foi separada uma alíquota de 20 µl de células e homogeneizada com 20 µl de Tripan Blue (SIGMA) em *eppendorf*, que em seguida foram transferidos para a câmara de Neubauer, visualizadas e contadas em microscópio óptico. Por fim, as células foram transferidas para a garrafa de cultivo (TPP) de 25 cm³ e foram adicionados mais 10 ml de meio RPMI completo. A garrafa foi armazenada em incubadora (SANYO), em atmosfera contendo 5 % de CO2, com umidade controlada e temperatura constante de 37°C. A linha celular estabelecida utilizada foi a HUT-78#11 linfocitica conservada em criogenia, doada pelo Laboratório de Bioprospecção do Hospital Veterinário da UnB, que foi descongelada em temperatura ambiente de 37 Cº. Realizou-se o mesmo processo de lavagem, visualização, contagem e armazenamento em garrafas de cultivo das linhas celulares primários.

3.3 Tratamento com extratos: Para o tratamento com os extratos, os mesmos foram diluídos com meio RPMI (SIGMA) em 3 diferentes concentrações (1:1, 1:2, 1: 4). As células foram tratadas em padrão de triplicata e o cálculo utilizado foi o seguinte:

Média de células/4 x 20.000 = N de cel/ml

Para se obter o número proporcional de células por ml em relação ao meio e aos extratos, utilizou-se 4ml de meio RPMI (SIGMA) com células previamente cultivadas e 3ml de extrato. No total foram obtidas 12 garrafas de cultivo por linha celular, sendo 3 garrafas para cada concentração mais o cultivo controle, totalizando 24 garrafas de ambas as linhas celulares. As garrafas foram armazenadas em incubadora (SANYO), em atmosfera contendo 5% de CO2, com umidade controlada e temperatura constante de 37C°.

3.4 Viabilidade Celular: A viabilidade celular foi verificada através do método que utiliza como princípio a exclusão do corante vital *Trypan Blue* (SIGMA). Coletou-se alíquota de 10 µl de suspensão de células homogeneizadas de cada garrafa de cultivo tratada com extratos e adicionou-se 10 µl de corante em um *eppendorf* em fluxo laminar. A solução homogeneizada foi transferida para a câmara de Neubauer com uma lamínula sobreposta e contada as células em 4 quadrantes em microscópio óptico. As células mortas coram-se em azul e as vivas não captam o corante. Foi

possível observar a morfologia celular de ambas as linhas celulares e contabilizar as células viáveis.

- 3.5 Manutenção das células 4T1: As células de linhagem 4T1 foram cultivadas em meio DME (INLAB), que foi reconstituído em 800 ml de água Milli-Q, ajustando-se o pH em torno de 7,0-7,2, utilizando 2,2 g/L de bicarbonato de sódio. O meio foi esterilizado por filtração em membrana de acetatonitrato de celulose com poros de 0,22 µm (MILLIPORE®) sob pressão de bomba de vácuo (PRISMATEC). O teste de esterilidade foi realizado através da aliquotação da solução em 2 garrafas de vidro (BOECO) de 400 ml bem vedadas que ficaram na estufa a 37Cº por 18 horas. As células foram descongeladas em temperatura ambiente de 37Cº, centrifugadas e distribuídas em garrafas de cultivo com meio DME.
- 3.6 Ensaio morfológico para células 4T1: Após o processo de cultivo celular, as células 4T1 foram tripsinizadas. Para cada poço foram utilizadas 2,5x10⁵ cels/ml, cada poço 100 µl de meio DME (INLAB) e 100 µl de extrato diluído em DME (INLAB). Para controle negativo foram utilizados 200 µl de DME e para controle positivo foram utilizados 100 µl de DMSO e 100 µl de DME (INLAB). Após feita a triplicata de todos os extratos em uma placa de 96 poços (COESTAR), a mesma foi incubada durante 24 horas e em seguida foi visualizada em microscópio invertido. As células foram classificadas por +; sendo de + (pouca variação em relação ao controle negativo) a +++ (muita variação em relação ao controle negativo). As diluições que apresentaram ++++ foram tomadas como referência para novas diluições seriadas.

3.7 Teste de Citotoxicidade: •

Primeiro os reagentes do kit CytoTox-GloTM Cytotoxicity #G9290 foram preparados com forme instruções do fabricante. O kit foi retirado do -80°C e seus reagentes (dois frascos de tampão, um frasco contendo substrato AAF-GloTM subtrate (alanylalanylphenylalanyl-aminoluciferin) e um frasco contendo reagente de lise (Digitonin)), foram aquecidos até 37°C no banho-maria. Após aquecidos, um frasco de tampão foi utilizado para diluir o AAF-GloTM subtrate e outro para diluir o Digitonin conforme recomendação do fabricante. A garrafa de cultivo contendo as células 4T1 chegaram a confluência de 80% a 90%, foi feito novamente o processo de tripsinização e as células foram lavadas utilizando-se meio DME (INLAB). O meio contendo as células foi centrifugado a 1600 rpm em temperatura de 22°C por 5 minutos. Após a

centrifugação o sobrenadante foi retirado e as células foram ressuspendidas em meio DME (INLAB) completo. Uma alíquota foi retirada para contagem em câmara de Neubauer. Após a contagem foram utilizadas 10.000 células, em 100 µl de meio DME, para cada um dos 96 poços utilizados. Os extratos foram preparados em meio RPMI (INLAB) completo para sua diluição inicial. E após o preparo, a diluição inicial foi diluída em meio DME incompleto. Para o extrato de Noni seguindo o referencial morfológico do experimento passado foram calculadas as diluições: 1:4,1:8,1:16,1:32,1:64, 1:128 e 1:256. Para o açaí e para o BR-51 foram utilizadas as diluições: 1:8, 1:16, 1:32, 1:64, 1:128, 1:256, 1:512 e 1:1024. Foram adicionadas 100 μl de extrato em toda a placa de 96 poços junto com 100 μl de células, totalizando um volume final de 200 µl para cada poço. Para o controle negativo foram adicionados 200 µl de DME completo. Para a preparação do controle positivo, as células passaram por três ciclos de resfriamento a -80°C por 15 minutos, após o tempo de congelamento as células foram aquecidas a 50°C. Foram adicionados 200 µl do meio contendo o controle positivo aos poços. As células foram deixadas na incubadora (SANYO) a 37°C com 5% de CO2 por 24 horas. Após as 24 horas, a placa foi retirada da incubadora e 50 µl do reagente luminescente do kit CytoTox-GloTM Cytotoxicity foi colocado em cada poço da placa. A placa foi levada ao orbital shaker para homogeneizar por um minuto e deixado em temperatura ambiente por 15 minutos. Após o tempo de 15 minutos, fez-se a leitura da placa no aparelho VictoX2 (PERKINELMER), configurado para aferir a luminescência nos tempos de 0',5',10',15',20',25 minutos. Após realizadas as medidas. A placa foi retirada 50 microlitros de reagente de lise (Digitonin) foi adicionado em todos os poços. A mistura foi homogeneizada durante um minuto em um Orbital Shaker, e deixado 15 minutos em temperatura ambiente antes de medir no VictoX2 (PERKINELMER). Após os 15 minutos a placa foi colocada para aferir a luminescência, que foram medidas no intervalo de tempo de 60', 65',70',75', 80' e 85 minutos levando em consideração o tempo inicial em que o reagente de luminescência foi colocado.

3.8 Análise Estatística: Utilizou-se o software *GraphPad Prism* versão 6.00 para Windows (GRAPHPAD SOFTWARE) para a avaliação da análise estatística dos testes citotóxicos e de viabilidade celular. Para ambos, foi empregado o Teste de *Dunnett*, que realizou múltiplas comparações com um controle (MCC). Como as amostras eram todas aleatórias e independentes entre si, foi necessário comparar as

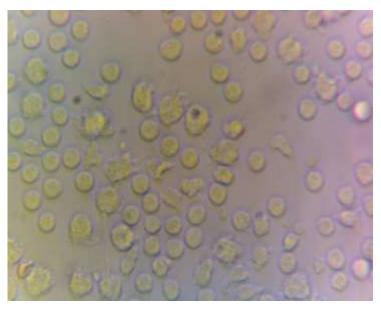
amostras tratadas com o controle negativo, para averiguar se houve uma significância entre os grupos separados. Partindo do princípio do teste de *Dunnett* o manual do Graphpad sugeriu a realização de uma análise ANOVA. A análise por ANOVA possui pontos importantes, como Intervalo de Confiança, Valor de P e o próprio teste de Dunnett. Dentro da análise de ANOVA foram considerados 2 variantes, One-Way ANOVA e Two-way ANOVA. A One-Way ANOVA foi utilizada para comparar grupos que só possuiram uma variante no eixo X de um gráfico. Ele foi utilizado nos resultados gerados pelo kit CytoTox-GloTM Cytotoxicity, sendo o eixo X a variável de concentrações dos extratos e o eixo Y variável da viabilidade celular medida pela luminescência. O Two-Way ANOVA foi usado para compara os grupos que possuíam mais de uma variante no eixo X, que foi utilizado no ensaio envolvendo Viabilidade celular. O eixo X representou a variação dos tempos de contagem de 24h, 48h, 144h e 168 horas. Utilizou-se os dois testes para averiguar os resultados comparados entre o Controle Negativo e as garrafas de cultivo testadas, confirmando uma significância ou não entre eles. Para averiguar a significância dos resultados, o GraphPad foi programado para utilizar como valor de P< 0,0001. O valor de P foi a probabilidade de diferença. O software também foi programado para calcular o Intervalo de Confiança (CL). Para uma melhor compreensão, o resultado, analisado a partir do One-Way ANOVA e Two-Way ANOVA, foi convertido em gráficos a partir de tabelas que proporcionaram a média de todos os resultados.

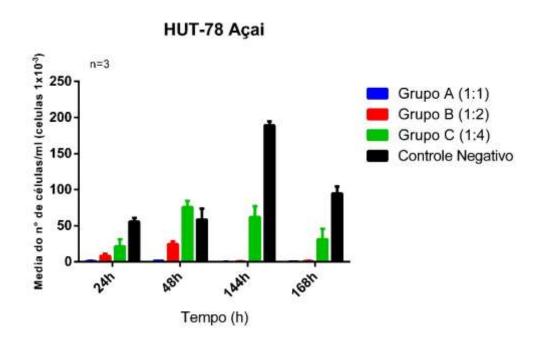
3.9 Ensaio Bacteriano: As cepas bacterianas foram doadas pelo Hospital Regional da Asa Norte. Foram utilizadas cepas ATCC das espécies *Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa* e cepas de relevância clínica KPC + (*Klebisiella pneumoniae* Carbapenemase positiva) e KPC- (*Klebisiella pneumoniae* Carbapenemase negativa). As mesmas foram cultivadas em ágar Mueller-Hinton, MH (KASVI) e incubados em estufa a 37 Cº por 24 horas. Foram utilizadas placas com ágar MH para a realização dos ensaios com os extratos em padrão de quadriplicata. Foi utilizado um carimbo de placa estéril para perfurar o ágar e criar poços onde os extratos foram depositados juntamente com o antibiótico de resposta já conhecida para cada bactéria. As bactérias foram diluídas em salina estéril a concentração de 0,5 segundo a escala de turbidez de McFarlan. As bactérias já diluídas foram depositadas na placa já perfurada e homogeneizadas com pérolas de vidros estéreis, em seguida foram depositados os extratos em concentrações de 1:1, 1:2 e 1:4, as

placas foram identificadas e levadas para estufa por 24 horas. Após o período de incubação as placas foram observadas e os halos de inibição foram aferidos.

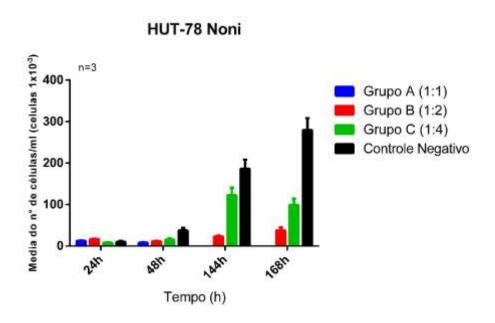
4. RESULTADOS E DISCUSSÃO

Para o ensaio de contagem inicial com a câmara de Neubauer e o corante *trypan blue*, as células foram visualizadas em microscópio óptico (figura 1). Para o cálculo da quantidade de células que cresceram, foi utilizada a média de células dividido e depois multiplicado por 4, que foram os quadrantes contados da câmara de Neubauer multiplicado por 20.000 e alcançou-se o número de células por ml (cel/ml). Foram encontrados os valores de 1.054.166 cel/ml das células de linhagem primárias nomeadas de JPR e 237.500 cel/ml das células de linhagem HUT-78. O valor do número de células foi dividido em 12 garrafas de cultivo e foi utilizado 1ml do número de células encontradas, mais 1ml de fator de crescimento celular, mais 4ml de meio RPMI e, por último, 1ml de extrato.




Figura 1: Células em cultivo celular para preparo de contagem

FONTE: NAPOLEAO&ROMUALDO, 2017


Na fase de cultivo celular foram feitos ensaios com extratos separadamente. Depois foram contados e tabelados os números de células. Em seguida, foram armazenados os dados para a produção dos gráficos através do programa *GraphPad*, de acordo com a relevância de tempo X crescimento celular de células tratadas. O grupo A representa a triplicata de garrafas cultivadas em concentração de extrato de 1:1, baseando-se no cálculo da diluição de 0,0428g de extrato por ml de RPMI,

incompleto no caso do açaí, e do BR-51. O noni possui a concentração de 4,39g por ml de RPMI, incompleto em sua diluição. O grupo B representa a concentração de extratos de 1:2; e o grupo C representa a concentração de extratos de 1:4. O grupo controle negativo representa a triplicada que não foi tratada com nenhum extrato.

Gráfico 1: Padrão de crescimento de células HUT-78 tratadas com extrato E.O. (Açai) em 24, 48, 144 e 168 horas.

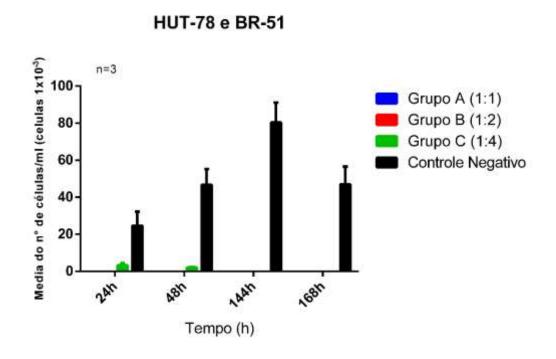
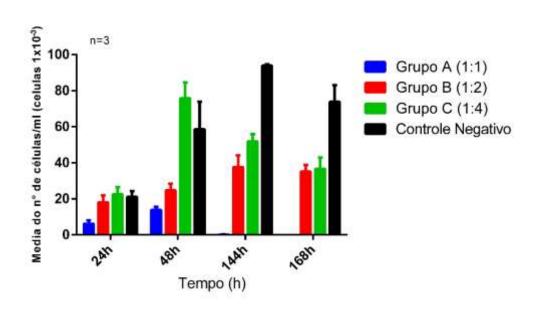
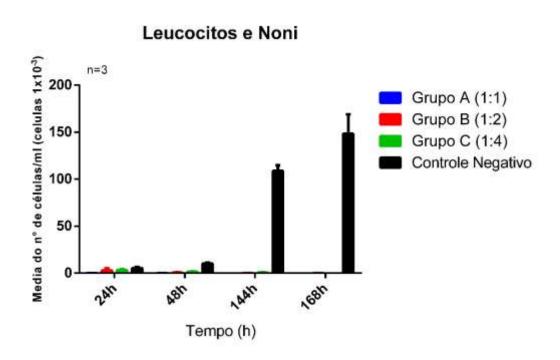


Gráfico 2: Padrão de crescimento de células HUT-78 tratadas com extrato M.C (Noni) em 24, 48, 144 e 168 horas.

FONTE: ROMUALDO, 2017.


Gráfico 3: Padrão de crescimento de células HUT-78 tratadas com extrato BR-51 em 24, 48, 144 e 168 horas.

FONTE: ROMUALDO, 2017


Gráfico 4: Padrão de crescimento de células primarias JPR tratadas com extrato E.O (Açaí) em 24, 48, 144 e 168 horas.

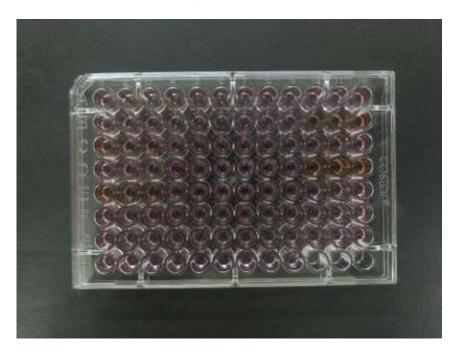
Leucocitos Açai

FONTE: ROMUADO, 2017.

Gráfico 5: Padrão de crescimento de células primarias JPR tratadas com extrato M.C (noni) em 24, 48, 144 e 168 horas.

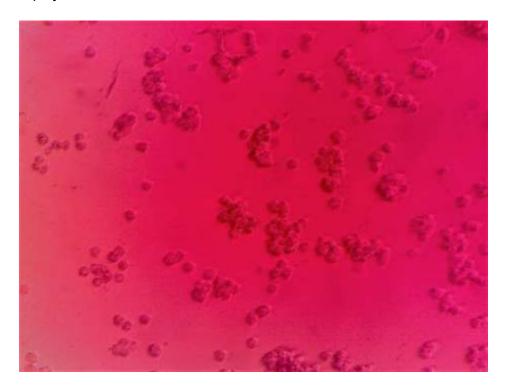
Apesar de terem sidos submetidos ao mesmo tipo de tratamento pelo mesmo período de dias e com as mesmas concentrações de extratos, é possível observar uma diferença na resposta celular entres as células HUT-78 e JPR leucocitárias, levando em consideração a proporção de células que foram utilizadas no ensaio inicial. As células primárias estavam na casa de milhões, enquanto as células de linhagem estabelecida eram em torno de 200.000. As células HUT-78 são visivelmente mais resistentes aos tratamentos, pois são células de linhagem estabelecidas, originada de linfoma cutâneo de linfócitos T de pacientes humanos com síndrome de Sezary, de acordo com Gazdar et. al,(1980). Essas células possuem as características das células neoplásicas. Elas foram utilizadas para validar a análise da viabilidade celular das células de forma uniforme, pois as células 4T1 possuem características aderentes, o que não proporciona uma metodologia pratica para sua contagem, em comparação com as características de suspensão das células primárias.

O extrato BR-51 gerou um potencial letal maior que os extratos de Noni e Açai, de acordo com Da Mata (2011). O BR-51 apresentou alto potencial citotóxico e antiproliferativo, se comparado com os outros extratos da família *Fabacea*. Ele apresenta potencial letal, em poucos dias, até mesmo em células de caráter neoplásico como a HUT-78, como demonstra o gráfico 3. O ensaio com células primárias não pôde ser realizado, em função do tempo gasto no presente projeto.


De acordo com Bani et al. (2010), o açaí possui compostos fenólicos que são conhecidos por sua capacidade de combater a oxidação celular, o que incentiva o estudo desses componentes como potencial terapêutico no combate de várias doenças, inclusive o câncer. Foi possível observar no grupo A forte atividade antiproliferativa do açaí em ambas as linhagens celulares. O mesmo pode ser observado no grupo B, porém de forma mais equilibrada, com uma porcentagem de células vivas maior que a de células mortas.

Assim como o açaí, o noni também possui vários componentes fitoquímicos, como a xeronina, com potencial terapêutico, de acordo com Serrano & Suáres (2014), e apresentou um desempenho melhor que o açaí no quesito atividade antiproliferativa em ambas as linhagens.

Para ambos os resultados das contagens o programa GraphPad baseou as informações e as processou em forma de gráficos, usando o princípio do Teste de Dunnett. O teste é referido em diversas literaturas como aquele que realiza múltiplas comparações com um controle (MCC). Como as amostras eram todas aleatórias e independentes entre si, foi necessário comparar as amostras tratadas com o controle negativo, para averiguar se houve uma significância entre os grupos separados (BROCH, 2013). Em todos os gráficos o grupo controle negativo teve um crescimento exponencial, porém nos últimos dias, o controle teve leves diminuições devido à escassez do meio em si.


O preparo das células 4T1 para o ensaio citotóxico com o kit CytoTox-GloTM Cytotoxicity foi feito em placa de 96 poços, pois as células 4T1 possuem um caráter aderente e precisaram ser removidas das garrafas de cultivo através de tripsinização antes do tratamento com os extratos. Os ensaios morfológicos foram feitos também em triplicata por poços; os mesmos foram separados para cada extrato nas concentrações inicias de 1:1, 1:2 e 1:4, juntamente com os controles positivos tratados com DMSO, e os negativos sem tratamento. Eles foram observados em microscópio invertido, após 24 horas de incubação a 37 Cº com 5 % de CO2, conforme as figuras de 02 a 13.

FONTE: ROMUALDO, 2017.

Figura 3: Células 4T1 tratadas com extrato BR-51 na concentração 1:1 em placa de 96 poços.

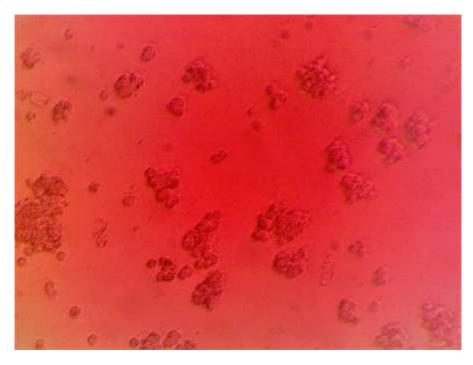

FONTE: NAPOLEÃO, 2017.

Figura 4: Células 4T1 tratadas com extrato BR-51 na concentração 1:2 em placa de 96 poços.

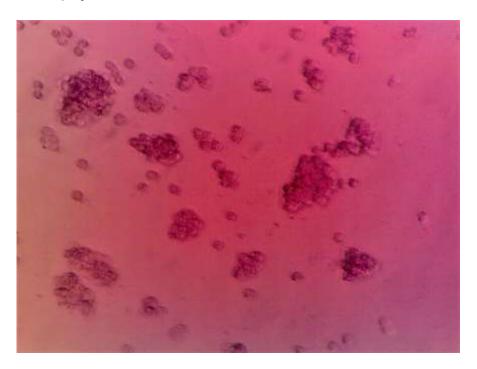

FONTE: NAPOLEÃO, 2017.

Figura 5: Células 4T1 tratadas com extrato BR-51 na concentração 1:4 em placa de 96 poços.

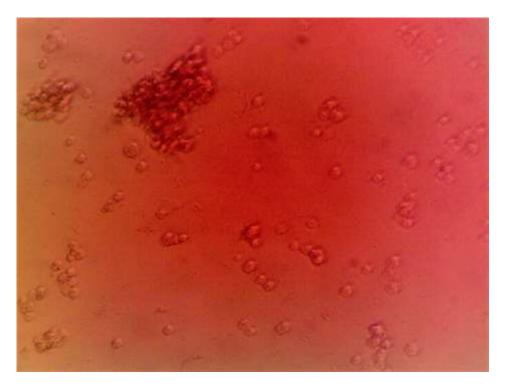

FONTE: NAPOLEAO, 2017.

Figura 6: Células 4T1 tratadas com extrato E.O (açaí) na concentração 1:1 em placa de 96 poços.

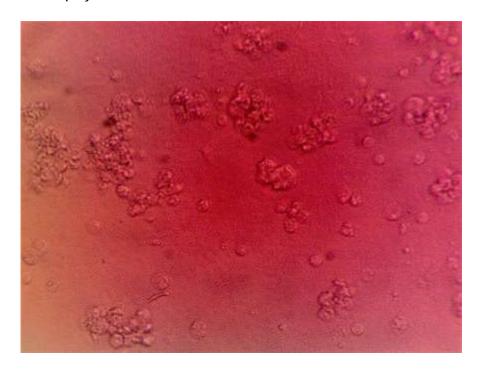

FONTE: NAPOLEÃO, 2017.

Figura 7: Células 4T1 tratadas com extrato E.O (açaí) na concentração 1:2 em placa de 96 poços.


FONTE: NAPOLEAO, 2017.

Figura 8: Células 4T1 tratadas com extrato E.O (açaí) na concentração 1:4 em placa de 96 poços.

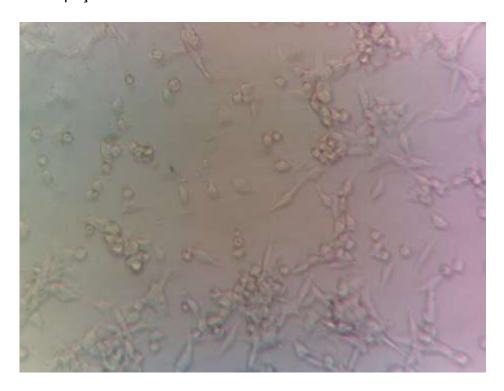

FONTE: NAPOLEAO, 2017.

Figura 9: Células 4T1 tratadas com extrato M.C (noni) na concentração 1:1 em placa de 96 poços.

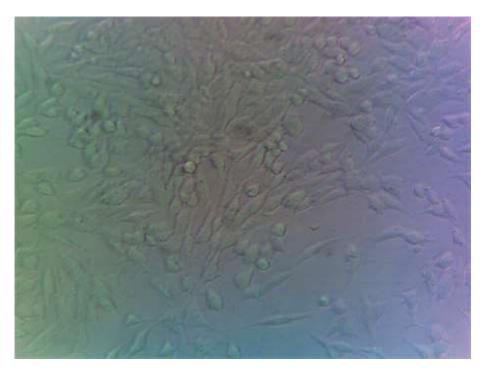

FONTE: NAPOLEÃO, 2017.

Figura 10: Células 4T1 tratadas com extrato M.C (noni) na concentração 1:2 em placa de 96 poços.

FONTE: NAPOLEÃO, 2017

Figura 11: Células 4T1 tratadas com extrato M.C (noni) na concentração 1:4 em placa de 96 poços.

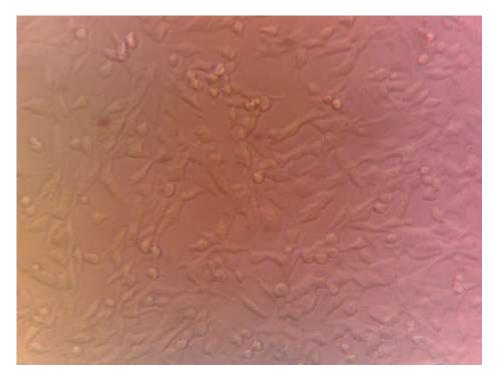
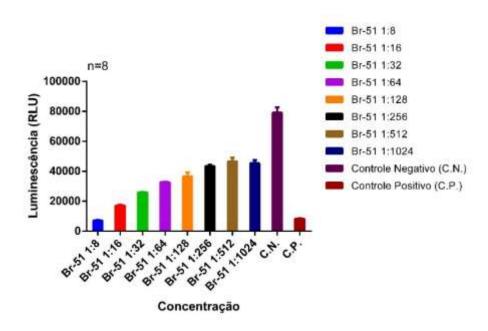

FONTE: NAPOLEÃO, 2017.

Figura 12: Células 4T1 do grupo CONTROLE positivo submetidas tratadas com DMSO em placa de 96 poços.

FONTE: NAPOLEÃO, 2017.

Figura 13: Células 4T1 do grupo CONTROLE negativo que não foram submetidas a nenhum tratamento em placa de 96 poços.

FONTE: NAPOLEAO, 2017.


Através do controle negativo (figura 13), sem tratamento, é possível observar a morfologia real aderente das células 4T1, que apresentam formatos esticados bastante caraterísticos de células epiteliais, indicando sua integridade. As células do controle positivo (figura 12) foram tratadas com Dimetilsulfoxido - DMSO, um componente químico extremamente tóxico que rompe a integridade da membrana da célula causando morte celular. É possível ver grumos de células aglomerados em montes de forma disseminada, indicando a destruição da célula, que perdeu sua morfologia original.

Nas figuras 2, 3, 4, 5, 6, 7 e 8 também é possível observar a formação de grumos, o que indica a morte celular provocada pelo extrato, corroborando a hipótese de que os extratos de açaí e BR-51 possuem atividade antiproliferativa muito evidente em altas concentrações.

Nas figuras 10 e 11 é possível ver que, mesmo com tratamento feito com extrato de noni, observam-se células ainda viáveis, indicando que a concentração do mesmo é de extrema relevância para avaliar sua atividade antiproliferativa.

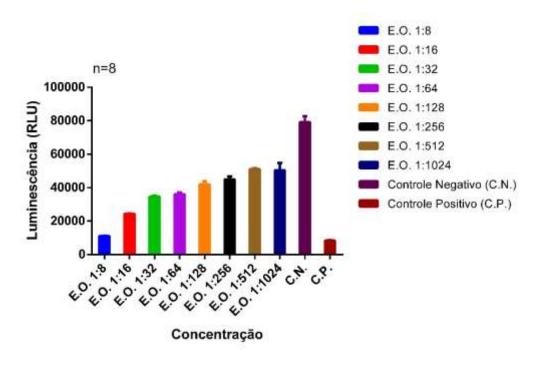
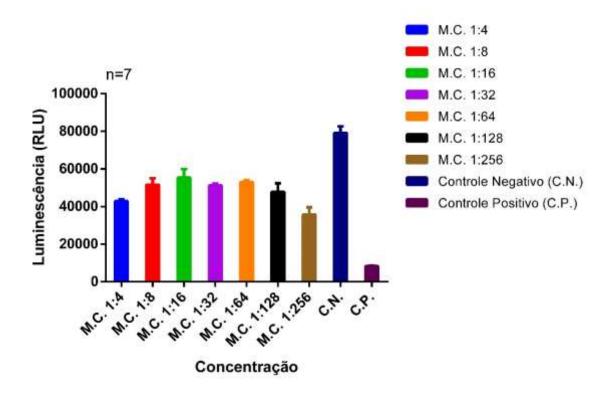

O ensaio citotóxico com as células 4T1, realizado com o kit CytoTox-Glo[™] Cytotoxicity, foi feito após a análise morfológica em placa de 96 poços e usou as concentrações de 1:4,1:8,1:16,1:32,1:64, 1:128 e 1:256 para o extrato de noni e as concentrações de 1:8,1:16,1:32,1:64, 1:128, 1:256, 1:512, 1:1024 para os extratos de açaí e BR-51.

Gráfico 6: Ensaio Citotóxico de células 4T1 tratadas com extrato BR51 em variadas concentrações em resposta ao padrão de luminescência.



FONTE: ROMUALDO, 2017.

Gráfico 7: Ensaio Citotóxico de células 4T1 tratadas com extrato E.O (açaí) em variadas concentrações em resposta ao padrão de luminescência.

Gráfico 8: Ensaio Citotóxico de células 4T1 tratadas com extrato M.C (noni) em variadas concentrações em resposta ao padrão de luminescência.

FONTE: ROMUALDO, 2017.

O Ensaio CytoTox-GloTM avalia a atividade de uma protease distinta associada a Citotoxicidade. O ensaio utiliza um substrato peptídico luminogênico (alanil-alanil-Fenilalanil-aminoluciferina o substrato AAF-GloTM) que se liga a essa protease liberada pelo processo de morte celular, indicando as células que perderam a integridade da membrana. O substrato AAF-GloTM não pode atravessar a membrana intacta de células viáveis e não gera nenhum sinal apreciável da população de células vivas.

Essa luminescência foi chamada de luminescência inicial. Em seguida utilizouse um reagente de lise para destruir todas as células do ensaio. Foi então feito o cálculo com o total de células mortas, menos a luminescência inicial, gerando o resultado final do sinal luminescente de células viáveis.

Signal from Viable Cells = Total Cytotoxicity Signal - Initial Cytotoxic Signal

Percebe-se que quanto maior for a captação da absorbância de luz, menor será o número de células viáveis depois do cálculo de correção. O CONTROLE positivo, sem tratamentos, dos gráficos 6,7,8 apresenta as maiores barras, indicando que a maioria das células ainda estavam viáveis antes de serem lisadas, diferente do CONTROLE negativo, cujos valores são menores, indicando que desde a luminescência inicial o número de células mortas era muito alto, comparado ao total de células do ensaio, o que diminuiu o valor do sinal de luminescência final.

Nos ensaios dos extratos de Açaí e do BR-51 foi possível observar que quanto mais diluído estiver o extrato, maior será a quantidade de células viáveis. O noni, porém, apresentou um comportamento diferente, pois quanto mais diluído estava maior foi o seu potencial citotóxico. Faz-se necessário estudos mais apurados acerca dos componentes citológicos e enzimáticos que possa causar esse comportamento.

As diluições consideradas como ideais são as que chegam o mais próximo de 50% de células mortas e 50% de células viáveis, usando o controle negativo como o parâmetro 100% e o controle positivo como o 0% de viabilidade. Nesse caso, a concentração ideal de 1:16 para o BR-51, 1:8 para o Açai, e 1:4 para o Noni.

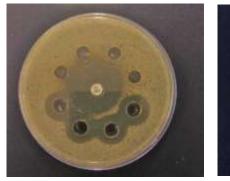
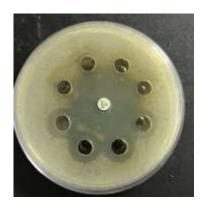

O ensaio Bacteriano foi concluído após a aferição dos halos e da observação se houve ou não inibição do crescimento bacteriano, conforme as figuras de 14 a 24.

Figura 14: Crescimento de *Escherichia coli* em ágar M.H com extrato de BR-51 em diluições de 1:1, 1:2, (a esquerda), 1:4 e controle (a direita).

FONTE: ROMUALDO, 2017.

Figura 15: Crescimento de KPC - em ágar M.H com extrato de BR-51 em diluições de 1:1, 1:2 (a esquerda), 1:4 e controle (a direita).

Figura 16: Crescimento de KPC +em ágar M.H com extrato de BR-51 em diluições de de 1:1, 1:2 (a esquerda), 1:4 e controle (a direita).


FONTE: ROMUALDO, 2017.

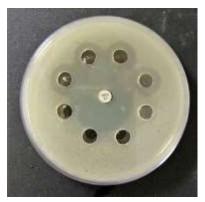

Figura 17: Crescimento de *Pseudomonas aeruginosa* em ágar M.H com extrato de BR-51 em diluições de 1:1, 1:2 (a esquerda), 1:4 e controle (a direita).

Figura 18: Crescimento de *Escherichia coli* em ágar M.H com extrato de Açaí em diluições de 1:1, 1:2 (a esquerda),1:4 e controle (a direita).


FONTE: ROMUALDO, 2017.

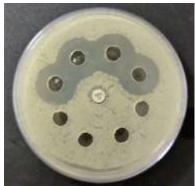

Figura 19: Crescimento de KPC - em ágar M.H com extrato de Açaí em diluições de 1:1, 1:2 (a esquerda),1:4 e controle (a direita).

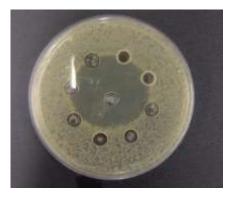
Figura 20: Crescimento de KPC+ em ágar M.H com extrato de Açaí em diluições de 1:1, 1:2 (a esquerda),1:4 e controle (a direita).

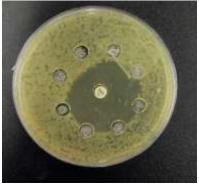
FONTE: ROMAULDO, 2017.

Figura 21: Crescimento de *Pseudomonas aeruginosa* em ágar M.H com extrato de Açaí em diluições de 1:1, 1:2 (a esquerda),1:4 e controle (a direita).

Figura 22: Crescimento de *Staphylococcus aureus* em ágar M.H com extrato de Açaí em diluições de 1:1, 1:2 (a esquerda),1:4 e controle (a direita).

FONTE: ROMUALDO, 2017.


Figura 23: Crescimento de KPC - em ágar M.H com extrato de Noni em diluições de 1:1, 1:2 (a esquerda),1:4 e controle (a direita).



FONTE: ROMUALDO, 2017.

Figura 24: Crescimento de *Escherichia coli* em ágar M.H com extrato de Noni em diluições de 1:1, 1:2 (a esquerda),1:4 e controle (a direita).

O ensaio bacteriano foi realizado para avaliar uma possível via futura de estudo em relação aos extratos de plantas usados nesse projeto. Sendo assim, na presente pesquisa somente pode-se inferir que os extratos inibem ou não inibem o crescimento bacteriano por observação, pois os halos se encontram em confluência, impossibilitando qualquer tentativa de cálculo preciso. Nesse processo, alguns ensaios foram descartados pois houve contaminação ou comportamento anormal do crescimento celular, o que pode ter sido, ou não, causado pelos extratos utilizados.

5. CONSIDERAÇÕES FINAIS

O câncer de mama acomete muitas mulheres a cada ano por todo o mundo. O tratamento atualmente preconizado para essa doença possui inúmeros efeitos colaterais indesejados e alta taxa de insucesso. Portanto, existe a necessidade em estabelecer terapias com ação seletiva sobre as células tumorais ou que sejam capazes de aumentar a sobrevida das pacientes.

Nesse sentido, o uso de plantas medicinais que demonstram atividade contra certos tipos de tumores, antimicrobiana e antiproliferativa são relevantes para a pesquisa. Como futuros profissionais da área de saúde e pesquisadores, visamos explorar alternativas mais práticas e de baixo custo para o tratamento de diversas patologias com recursos naturais e sustentáveis.

A presente pesquisa teve como propósito avaliar o potencial terapêutico dos extratos do Açaí e do Noni no tratamento do câncer. Para tanto, foram utilizadas linhas celulares estabelecidas e primárias. Nos experimentos em laboratório, foi avaliada a citotoxicidade in vitro dos extratos brutos das referidas plantas, por meio de diferentes concentrações. Buscou-se pesquisar o potencial inibitório do crescimento bacteriano ao se utilizar os extratos das plantas.

Os resultados da pesquisa apontam que há ainda um longo caminho a ser percorrido pela ciência para alcançar e usufruir os benefícios terapêuticos, de maneira segura e comprovada, dos extratos de plantas no tratamento e na prevenção do câncer de mama. São necessários investimentos ainda mais substanciais em futuras pesquisas, o que demanda tempo e recursos.

6. REFERÊNCIAS

- ALMEIDA S. P; CARNEVALE V. PV; ROXO P.P. Mamografia de rastreamento para câncer de mama pelo sus na região metropolitana do vale do paraíba e litoral norte: tendência e características sociais de mulheres submetidas ao exame, entre 2010 e 2014. Revista UniVap. 22, 41, 45-60, Dec. 2016. ISSN: 22371753.
- BANI CORREA, C; et al. *Obtencao de suco misto de acai a partir da fracao retida no processo de microfiltracao*. Alimentos e Nutrição (Brazilian Journal of Food and Nutrition). 3, 377, 2010. ISSN: 0103-4235.
- BROWN, S.B., BROWN, E.A., WALKER, I. The present and future role of photodynamic therapy in cancer treatment. The Lancet Oncology. 5(8): 497-508, 2004.
- CARNEIRO, M.L.B., PEIXOTO, R.CA., JOANITTI, G.A., OLIVEIRA, R.G.S., TELLES, L.A., MIRANDA-VILELA, A.L.M., BOCCA, A.L., VIANNA, L.MS., SILVA, I.CR., SOUZA, A.R., LAVACA, Z.G.M., BÁO, S.N. *Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer*. Journal of Nanobiotechnology.11:4, 2013.
- CORREIA A F; SEGOVIA J F O; GONÇALVES M C A; OLIVEIRA L O; SILVEIRA D; CARVALHO J C T; KANZAKI, L I B. 2008. *Amazonian plant crude extract screening for activity against multidrug-resistant bacteria*. Eur, Rev. Med. Pharmacol. Sci. 12:369-380.
- Cumming, G., et al. Error bars in experimental biology. The Journal of Cell Biology, Vol. 177 N.1. Abril 2007. Pp 7-11. Disponível em: http://www.jcb.org/cgi/doi/10.1083/jcb.200611141. . Acessado em: 23/08/2017.
- DA MATA, É.,C.,G. Avaliação de Atividade Antiretroviral de Plantas Amazônicas Utilizando como Modelo o Vírus da Imunodeficiência Símia. Brasília, 2011. 90 p.: il. Dissertação de Mestrado (M) Universidade de Brasília/ Faculdade de Agronomia e Medicina Veterinária, 2011.
- FEELEY, K.J., SILMAN, M.R. *Extinction risks of Amazonian plant species*. 69 PNS. 106 (30): 12382-87.
- FRICZUK, M., NOWIS, D. GOLAB, J. *PDT- Induced inflammatory and host responses photochem protobiol.* Sci. 10 (5): 653-63, 2011.
- GraphPad Software, Inc. GraphPad Prism User Guide. La Jolla California USA, 1995 2014. Disponivel em: http://cdn.graphpad.com/docs/prism/6/Prism-6-User-Guide.pdf. Acessado em: 23/08/2017.
- GUARNERI, V., CONTE, P.F. *The curability of breast cancer and the treatment of advanced disease.* Eur. Jour. of nuclear medicine and molecular imaging. [Review]. 31:S149-61, 2004
- JUNG S Y, SEREIKA S M, LINDOV F., BRUFSKY A, WEISSFELD J L., ROSENZWEING M. The effect of delays in treatment for brest cancer metastasis on survival. Breast cancer research and treatment. 2011
- KIM, J. H., BAE, C.H., PARK, S. Y., KIM, Y. *Uncaria rhynchophylla inhibits the production of nitric oxide and interleukin-1B through blocking factor kB, Akt, and mitogen-activated protein kinase activation in macrophages*. J. Med food. 13 (5): 1133-10, 2010.

- MENDES SILVA, JJ; et al. *Esterco bovino e potássio na composição mineral de plantas de noni: cattle manure and potassium in the mineral composition of noni plants.* Ciência Florestal *(01039954).* 24, 4, 1021-1030, Dec. 2014. ISSN: 01039954.
- MIJAN, M. C. Terapia fotodinâmica mediada por aluminio-cloro-ftalocianina em formulação lipossomal no tratamento de câncer de mama in vitro e in vivo: mecanismos de ação e perfil imunoestimulatório. Brasília, 2012. 87p.: Dissertação de mestrado (M) Universidade de Brasília/ Faculdade de Ciência da Saúde, 2012.
- OLIVEIRA, L.A.R.; MACHADO, R.D.; RODRIGUES, A.J.L.. Survey on medicinal plants used with anticancer therapy by patients from Anapolis Oncology Unit. Rev. bras. Plantas med. Botucatu, v. 16, n. 1, p. 32-40, Mar. 2014.
- PEIXOTO, R.CA., MIRANDA-VILELA, A.L.M., SOUZA FILHO, J.S., CARNEIRO, M.L.B., OLIVEIRA, R.G.S., SILVA, M.O., SOUZA, A. R., BÁO, S.N. Antitumor effect of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles on mice bearing breast cancer: a systemic toxicity assay. Tumor Biol. 36:3325–3336, 2015.
- PROMEGA CORPORATION. CytoTox-GloTM Cytotoxicity Assay. Instructions for use of products G9290,G9291 AND G9292. Madison, Estados Unidos. 2015.Disponivel em: https://www.promega.com/resources/protocols/technical-bulletins/101/cytotox-glo-cytotoxicity-assay-protocol/. Acessado em: 23/08/2017.
- ROCHA, F. S. Detecção molecular do Papilomavirus humano (HPV) em amostras teciduais de tumores da mama. 2010. 101 f. Dissertação (Mestrado) Universidade Federal do Pará, Núcleo de Medicina Tropical, Belém, 2010. Programa de Pós-Graduação em Doenças Tropicais.
- SANTOS, M.C.A.; FREITAS, S. DE P.; AROUCHA, E.M.M.; SANTOS, A.L.A. *Anatomia e histoquímica de folhas e raízes de vinca (Catharanthus roseus* (L.) G. Don). Revista de biologia e ciências da terra, vol. 9 n. 1, 2009
- SERRANO CONTRERAS, AM; SUÁREZ SÁNCHEZ, FH. Efectos quimiopreventivos del jugo de Morindia citrifolia (noni) sobre cáncer mamario experimental en ratas: estudio preliminar: Chemopreventive Effects of Morindia Citrifolia Juice (noni) on Experimental Breast Cancer in Rats: Preliminary Study. Revista de Medicina Veterinaria. 27, 41-57. Janeiro 2014.
- WESTFALL P. H., TOBIAS, R. D., WOLFINGER, R. D., HOCHBERG, Y. *Multiple Comparisons and multiple testes using the SAS Sytem*, SAS Institute, 1999.
- YAACOB, N.S., YANKUZO, H.M., DEVARAJ, S., WONG, J. K. M., LAI, C.S. *Anti-tumor action, clinical biochemistry profile and phytochemical constituents of a pharmacologically active fraction of S. crispus in NMU-induced rat mammary tumour model.* Plos one, 2015 DOI:10.13771.
- ZHU H-H, HU C-H, STRICKLAND P. Perspectives of breast cancer etiology:synergistic interaction between smoking and exogenous hormone use. Chin J Cancer. 30 (7): 433-41, 2011.

7. ANEXOS

Anexo 1: Contagem da viabilidade celular utilizando exclusão por azul de trypan

Extrato	Concentr ação	Linhagem celular	Marcação da triplicata	Tempo	Total da primeira Câmara de Neubauer	Total da segunda Câmara de Neubauer	Média das duas Câmaras de Neubauer contadas
E.O.	01:01	Leucócito	A1	24h	10	4	7
E.O.	01:01	Leucócito	A1	48h	13	8	10,5
E.O.	01:01	Leucócito	A1	144h	0	0	0
E.O.	01:01	Leucócito	A1	168h	0	0	0
E.O.	01:01	Leucócito	A2	24h	10	8	9
E.O.	01:01	Leucócito	A2	48h	16	15	15,5
E.O.	01:01	Leucócito	A2	144h	1	0	0,5
E.O.	01:01	Leucócito	A2	168h	0	0	0
E.O.	01:01	Leucócito	A3	24h	1	4	2,5
E.O.	01:01	Leucócito	A3	48h	21	10	15,5
E.O.	01:01	Leucócito	A3	144h	0	0	0
E.O.	01:01	Leucócito	A3	168h	0	0	0
E.O.	01:02	Leucócito	B1	24h	22	17	19,5
E.O.	01:02	Leucócito	B1	48h	16	21	18,5
E.O.	01:02	Leucócito	B1	144h	35	25	30
E.O.	01:02	Leucócito	B1	168h	35	41	38
E.O.	01:02	Leucócito	B2	24h	23	25	24
E.O.	01:02	Leucócito	B2	48h	25	23	24
E.O.	01:02	Leucócito	B2	144h	29	36	32,5
E.O.	01:02	Leucócito	B2	168h	37	42	39,5
E.O.	01:02	Leucócito	В3	24h	6	15	10,5
E.O.	01:02	Leucócito	В3	48h	18	45	31,5
E.O.	01:02	Leucócito	В3	144h	43	58	50,5
E.O.	01:02	Leucócito	В3	168h	30	26	28
E.O.	01:04	Leucócito	C1	24h	22	32	27
E.O.	01:04	Leucócito	C1	48h	136	50	93
E.O.	01:04	Leucócito	C1	144h	46	71	58,5
E.O.	01:04	Leucócito	C1	168h	25	25	25
E.O.	01:04	Leucócito	C2	24h	14	15	14,5
E.O.	01:04	Leucócito	C2	48h	69	60	64,5
E.O.	01:04	Leucócito	C2	144h	56	33	44,5
E.O.	01:04	Leucócito	C2	168h	40	52	46
E.O.	01:04	Leucócito	C3	24h	30	22	26
E.O.	01:04	Leucócito	C3	48h	61	79	70
E.O.	01:04	Leucócito	C3	144h	49	56	52,5
E.O.	01:04	Leucócito	C3	168h	39	39	39
E.O.	C.N.	Leucócito	CN1	24h	37	16	26,5

E.O.	C.N.	Leucócito	CN1	48h	37	74	55,5
E.O.	C.N.	Leucócito	CN1	144h	96	92	94
E.O.	C.N.	Leucócito	CN1	168h	69	115	92
E.O.	C.N.	Leucócito	CN2	24h	23	8	15,5
E.O.	C.N.	Leucócito	CN2	48h	84	89	86,5
E.O.	C.N.	Leucócito	CN2	144h	79	106	92,5
E.O.	C.N.	Leucócito	CN2	168h	48	76	62
E.O.	C.N.	Leucócito	CN3	24h	13	29	21
E.O.	C.N.	Leucócito	CN3	48h	43	25	34
E.O.	C.N.	Leucócito	CN3	144h	91	99	95
E.O.	C.N.	Leucócito	CN3	168h	54	81	67,5
E.O.	01:01	HUT-78	A1	24h	0	3	1,5
E.O.	01:01	HUT-78	A1	48h	1	3	2
E.O.	01:01	HUT-78	A1	144h	0	1	0,5
E.O.	01:01	HUT-78	A1	168h	0	1	0,5
E.O.	01:01	HUT-78	A2	24h	2	0	1
E.O.	01:01	HUT-78	A2	48h	1	1	1
E.O.	01:01	HUT-78	A2	144h	0	0	0
E.O.	01:01	HUT-78	A2	168h	1	0	0,5
E.O.	01:01	HUT-78	A3	24h	2	0	1
E.O.	01:01	HUT-78	A3	48h	0	2	1
E.O.	01:01	HUT-78	A3	144h	0	0	0
E.O.	01:01	HUT-78	A3	168h	0	0	0
E.O.	01:02	HUT-78	B1	24h	3	6	4,5
E.O.	01:02	HUT-78	B1	48h	16	21	18,5
E.O.	01:02	HUT-78	B1	144h	0	0	0
E.O.	01:02	HUT-78	B1	168h	1	1	1
E.O.	01:02	HUT-78	B2	24h	9	3	6
E.O.	01:02	HUT-78	B2	48h	25	23	24
E.O.	01:02	HUT-78	B2	144h	0	0	0
E.O.	01:02	HUT-78	B2	168h	3	0	1,5
E.O.	01:02	HUT-78	В3	24h	8	20	14
E.O.	01:02	HUT-78	В3	48h	18	45	31,5
E.O.	01:02	HUT-78	В3	144h	0	2	1
E.O.	01:02	HUT-78	В3	168h	0	1	0,5
E.O.	01:04	HUT-78	C1	24h	9	17	13
E.O.	01:04	HUT-78	C1	48h	136	50	93
E.O.	01:04	HUT-78	C1	144h	27	44	35,5
E.O.	01:04	HUT-78	C1	168h	11	19	15
E.O.	01:04	HUT-78	C2	24h	8	14	11
E.O.	01:04	HUT-78	C2	48h	69	60	64,5
E.O.	01:04	HUT-78	C2	144h	62	66	64
E.O.	01:04	HUT-78	C2	168h	19	19	19
E.O.	01:04	HUT-78	C3	24h	31	51	41
E.O.	01:04	HUT-78	C3	48h	61	79	70

	04.04	70		4 4 4 1	00	00	07
E.O.	01:04	HUT-78	C3	144h	92	82	87
E.O.	01:04	HUT-78	C3	168h	58	62	60
E.O.	C.N.	HUT-78	CN1	24h	37	87	62
E.O.	C.N.	HUT-78	CN1	48h	37	74	55,5
E.O.	C.N.	HUT-78	CN1	144h	163	205	184
E.O.	C.N.	HUT-78	CN1	168h	117	111	114
E.O.	C.N.	HUT-78	CN2	24h	52	68	60
E.O.	C.N.	HUT-78	CN2	48h	84	89	86,5
E.O.	C.N.	HUT-78	CN2	144h	189	179	184
E.O.	C.N.	HUT-78	CN2	168h	91	87	89
E.O.	C.N.	HUT-78	CN3	24h	46	44	45
E.O.	C.N.	HUT-78	CN3	48h	43	25	34
E.O.	C.N.	HUT-78	CN3	144h	232	168	200
E.O.	C.N.	HUT-78	CN3	168h	82	80	81
M.C.	01:01	Leucócito	A1	24h	0	0	0
M.C.	01:01	Leucócito	A1	48h	1	0	0,5
M.C.	01:01	Leucócito	A1	144h	0	0	0
M.C.	01:01	Leucócito	A1	168h	0	0	0
M.C.	01:01	Leucócito	A2	24h	0	0	0
M.C.	01:01	Leucócito	A2	48h	0	0	0
M.C.	01:01	Leucócito	A2	144h	0	0	0
M.C.	01:01	Leucócito	A2	168h	0	0	0
M.C.	01:01	Leucócito	A3	24h	0	1	0,5
M.C.	01:01	Leucócito	A3	48h	0	0	0
M.C.	01:01	Leucócito	A3	144h	0	0	0
M.C.	01:01	Leucócito	A3	168h	0	0	0
M.C.	01:02	Leucócito	B1	24h	12	3	7,5
M.C.	01:02	Leucócito	B1	48h	2	0	1
M.C.	01:02	Leucócito	B1	144h	1	0	0,5
M.C.	01:02	Leucócito	B1	168h	0	1	0,5
M.C.	01:02	Leucócito	B2	24h	0	2	1
M.C.	01:02	Leucócito	B2	48h	1	0	0,5
M.C.	01:02	Leucócito	B2	144h	0	0	0
M.C.	01:02	Leucócito	B2	168h	0	0	0
M.C.	01:02	Leucócito	В3	24h	0	1	0,5
M.C.	01:02	Leucócito	В3	48h	1	1	1
M.C.	01:02	Leucócito	В3	144h	0	0	0
M.C.	01:02	Leucócito	В3	168h	0	0	0
M.C.	01:04	Leucócito	C1	24h	5	1	3
M.C.	01:04	Leucócito	C1	48h	0	1	0,5
M.C.	01:04	Leucócito	C1	144h	0	0	0
M.C.	01:04	Leucócito	C1	168h	0	0	0
M.C.	01:04	Leucócito	C2	24h	2	1	1,5
M.C.	01:04	Leucócito	C2	48h	1	4	2,5
M.C.	01:04	Leucócito	C2	144h	3	0	1,5

		Г		1	1	1	_
M.C.	01:04	Leucócito	C2	168h	0	0	0
M.C.	01:04	Leucócito	C3	24h	5	5	5
M.C.	01:04	Leucócito	C3	48h	3	0	1,5
M.C.	01:04	Leucócito	C3	144h	1	0	0,5
M.C.	01:04	Leucócito	C3	168h	0	0	0
M.C.	C.N.	Leucócito	CN1	24h	2	3	2,5
M.C.	C.N.	Leucócito	CN1	48h	14	6	10
M.C.	C.N.	Leucócito	CN1	144h	94	102	98
M.C.	C.N.	Leucócito	CN1	168h	100	259	179,5
M.C.	C.N.	Leucócito	CN2	24h	10	2	6
M.C.	C.N.	Leucócito	CN2	48h	14	10	12
M.C.	C.N.	Leucócito	CN2	144h	143	77	110
M.C.	C.N.	Leucócito	CN2	168h	155	157	156
M.C.	C.N.	Leucócito	CN3	24h	4	11	7,5
M.C.	C.N.	Leucócito	CN3	48h	12	5	8,5
M.C.	C.N.	Leucócito	CN3	144h	117	120	118,5
M.C.	C.N.	Leucócito	CN3	168h	106	113	109,5
M.C.	01:01	HUT-78	A1	24h	11	16	13,5
M.C.	01:01	HUT-78	A1	48h	5	7	6
M.C.	01:01	HUT-78	A1	144h	1	0	0,5
M.C.	01:01	HUT-78	A1	168h	0	0	0
M.C.	01:01	HUT-78	A2	24h	11	16	13,5
M.C.	01:01	HUT-78	A2	48h	8	9	8,5
M.C.	01:01	HUT-78	A2	144h	0	0	0
M.C.	01:01	HUT-78	A2	168h	0	0	0
M.C.	01:01	HUT-78	A3	24h	16	6	11
M.C.	01:01	HUT-78	A3	48h	8	12	10
M.C.	01:01	HUT-78	A3	144h	0	0	0
M.C.	01:01	HUT-78	A3	168h	0	0	0
M.C.	01:02	HUT-78	B1	24h	15	20	17,5
M.C.	01:02	HUT-78	B1	48h	21	5	13
M.C.	01:02	HUT-78	B1	144h	29	26	27,5
M.C.	01:02	HUT-78	B1	168h	56	45	50,5
M.C.	01:02	HUT-78	B2	24h	7	20	13,5
M.C.	01:02	HUT-78	B2	48h	9	10	9,5
M.C.	01:02	HUT-78	B2	144h	12	31	21,5
M.C.	01:02	HUT-78	B2	168h	35	42	38,5
M.C.	01:02	HUT-78	В3	24h	17	19	18
M.C.	01:02	HUT-78	В3	48h	16	8	12
M.C.	01:02	HUT-78	В3	144h	22	19	20,5
M.C.	01:02	HUT-78	В3	168h	28	19	23,5
M.C.	01:04	HUT-78	C1	24h	0	19	9,5
M.C.	01:04	HUT-78	C1	48h	7	34	20,5
M.C.	01:04	HUT-78	C1	144h	135	158	146,5
M.C.	01:04	HUT-78	C1	168h	126	113	119,5

	1	1	1		,	1	1
M.C.	01:04	HUT-78	C2	24h	9	6	7,5
M.C.	01:04	HUT-78	C2	48h	20	15	17,5
M.C.	01:04	HUT-78	C2	144h	87	87	87
M.C.	01:04	HUT-78	C2	168h	93	125	109
M.C.	01:04	HUT-78	C3	24h	4	9	6,5
M.C.	01:04	HUT-78	C3	48h	3	13	8
M.C.	01:04	HUT-78	C3	144h	134	134	134
M.C.	01:04	HUT-78	C3	168h	74	64	69
M.C.	C.N.	HUT-78	CN1	24h	7	10	8,5
M.C.	C.N.	HUT-78	CN1	48h	28	29	28,5
M.C.	C.N.	HUT-78	CN1	144h	172	150	161
M.C.	C.N.	HUT-78	CN1	168h	292	320	306
M.C.	C.N.	HUT-78	CN2	24h	7	4	5,5
M.C.	C.N.	HUT-78	CN2	48h	87	11	49
M.C.	C.N.	HUT-78	CN2	144h	344	116	230
M.C.	C.N.	HUT-78	CN2	168h	313	309	311
M.C.	C.N.	HUT-78	CN3	24h	9	21	15
M.C.	C.N.	HUT-78	CN3	48h	38	32	35
M.C.	C.N.	HUT-78	CN3	144h	64	273	168,5
M.C.	C.N.	HUT-78	CN3	168h	230	215	222,5
BR-51	01:01	HUT-78	A1	24h	0	0	0
BR-51	01:01	HUT-78	A1	48h	0	0	0
BR-51	01:01	HUT-78	A1	144h	0		0
BR-51	01:01	HUT-78	A1	168h	0	0	0
BR-51	01:01	HUT-78	A2	24h	0	0	0
BR-51	01:01	HUT-78	A2	48h	0	0	0
BR-51	01:01	HUT-78	A2	144h	0	0	0
BR-51	01:01	HUT-78	A2	168h	0	0	0
BR-51	01:01	HUT-78	A3	24h	0	0	0
BR-51	01:01	HUT-78	A3	48h	0	0	0
BR-51	01:01	HUT-78	A3	144h	0	0	0
BR-51	01:01	HUT-78	A3	168h	0	0	0
BR-51	01:02	HUT-78	B1	24h	0	0	0
BR-51	01:02	HUT-78	B1	48h	0	0	0
BR-51	01:02	HUT-78	B1	144h	0	0	0
BR-51	01:02	HUT-78	B1	168h	0	0	0
BR-51	01:02	HUT-78	B2	24h	0	0	0
BR-51	01:02	HUT-78	B2	48h	0	0	0
BR-51	01:02	HUT-78	B2	144h	0	0	0
BR-51	01:02	HUT-78	B2	168h	0	0	0
BR-51	01:02	HUT-78	B3	24h	0	0	0
BR-51	01:02	HUT-78	B3	48h	0	0	0
BR-51						1	1 -
DIV-21	01:02	HUT-78	В3	144h	0	0	0
BR-51		HUT-78 HUT-78	B3 B3	144h 168h	0 0 4	0 0 1	0

BR-51	01:04	HUT-78	C1	48h	3	2	2,5
BR-51	01:04	HUT-78	C1	144h	0	0	0
BR-51	01:04	HUT-78	C1	168h	0	0	0
BR-51	01:04	HUT-78	C2	24h	2	2	2
BR-51	01:04	HUT-78	C2	48h	1	2	1,5
BR-51	01:04	HUT-78	C2	144h	0	0	0
BR-51	01:04	HUT-78	C2	168h	0	0	0
BR-51	01:04	HUT-78	C3	24h	3	8	5,5
BR-51	01:04	HUT-78	C3	48h	2	2	2
BR-51	01:04	HUT-78	C3	144h	0	0	0
BR-51	01:04	HUT-78	C3	168h	0	0	0
BR-51	C.N.	HUT-78	CN1	24h	24	24	24
BR-51	C.N.	HUT-78	CN1	48h	31	32	31,5
BR-51	C.N.	HUT-78	CN1	144h	58	60	59
BR-51	C.N.	HUT-78	CN1	168h	28	29	28,5
BR-51	C.N.	HUT-78	CN2	24h	15	9	12
BR-51	C.N.	HUT-78	CN2	48h	52	71	61,5
BR-51	C.N.	HUT-78	CN2	144h	106	81	93,5
BR-51	C.N.	HUT-78	CN2	168h	63	57	60
BR-51	C.N.	HUT-78	CN3	24h	46	30	38
BR-51	C.N.	HUT-78	CN3	48h	40	54	47
BR-51	C.N.	HUT-78	CN3	144h	80	97	88,5
BR-51	C.N.	HUT-78	CN3	168h	64	41	52,5

Anexo 2: Resultados gerados pelo GraphPad Prism, para os ensaios de viabilidade celular por exclusão de Azul de trypan. Resultado, gerado pelo Two-way ANOVA, do Valor de P e a significância do experimento.

FONTE de Variação	Extrato	Linhagem celular	% do total de variação	Valor de P	Resumo do valor de P	Significante?
Interação	E.O.	Leucócitos	20,88	< 0,0001	***	Sim
Fator de linha	E.O.	Leucócitos	15,71	< 0,0001	***	Sim
Fator de coluna	E.O.	Leucócitos	54,75	< 0,0001	***	Sim
Interação	E.O.	HUT-78	25,37	< 0,0001	***	Sim
Fator de linha	E.O.	HUT-78	9,156	< 0,0001	***	Sim
Fator de coluna	E.O.	HUT-78	60,49	< 0,0001	***	Sim
Interação	M.C.	Leucócitos	33,82	< 0,0001	***	Sim
Fator de linha	M.C.	Leucócitos	25,97	< 0,0001	***	Sim
Fator de coluna	M.C.	Leucócitos	36,19	< 0,0001	***	Sim
Interação	M.C.	HUT-78	33,82	< 0,0001	***	Sim
Fator de linha	M.C.	HUT-78	25,97	< 0,0001	***	Sim
Fator de coluna	M.C.	HUT-78	36,19	< 0,0001	***	Sim
Interação	BR-51	HUT-78	12,96	< 0,0001	***	Sim
Fator de linha	BR-51	HUT-78	3,697	0,0035	**	Sim
Fator de coluna	BR-51	HUT-78	76,24	< 0,0001	***	Sim

Anexo 3: Resultado, gerado pelo Two-way, do Teste multiplo de Dunnett e a significância do experimento.

Teste de múltipla	Extrat	Linhage	Diferen	Diferença do	É	Resu
comparação de Dunnett	0	m	ça	95% de IC	significant	mo
		celular	media		e?	
Controle Negativo vs. Grupo	E.O.	Leucocit	56,79	46,42 para	Sim	****
A (1:1)		os		67,16		
Controle Negativo vs. Grupo	E.O.	Leucocit	32,96	22,59 para	Sim	****
B (1:2)		os		43,33		
Controle Negativo vs. Grupo	E.O.	Leucocit	15,13	4,756 para	Sim	**
C (1:4)		os		25,49		
Controle Negativo vs. Grupo	E.O.	HUT-78	98,83	84,98 para	Sim	****
A (1:1)				112,7		
Controle Negativo vs. Grupo	E.O.	HUT-78	91,04	77,19 para	Sim	****
B (1:2)				104,9		
Controle Negativo vs. Grupo	E.O.	HUT-78	51,83	37,98 para	Sim	****
C (1:4)				65,69		
Controle Negativo vs. Grupo	M.C.	Leucocit	123,1	103,6 para	Sim	****
A (1:1)		os		142,6		
Controle Negativo vs. Grupo	M.C.	Leucocit	106,3	86,77 para	Sim	****
B (1:2)		os		125,7		
Controle Negativo vs. Grupo	M.C.	Leucocit	67,17	47,69 para	Sim	****
C (1:4)		os		86,64		
Controle Negativo vs. Grupo	M.C.	HUT-78	68,08	58,65 para	Sim	****
A (1:1)				77,52		
Controle Negativo vs. Grupo	M.C.	HUT-78	67,13	57,69 para	Sim	****
B (1:2)				76,56		
Controle Negativo vs. Grupo	M.C.	HUT-78	66,83	57,40 para	Sim	****
C (1:4)				76,27		
Controle Negativo vs. Grupo	BR-	HUT-78	49,67	41,64 para	Sim	****
A (1:1)	51			57,69		
Controle Negativo vs. Grupo	BR-	HUT-78	49,67	41,64 para	Sim	****
B (1:2)	51			57,69		
Controle Negativo vs. Grupo	BR-	HUT-78	48,33	40,31 para	Sim	****
C (1:4)	51			56,36		

Anexo 4: Resultados gerados pelo GraphPad Prism, dos testes de Citotoxicidade em células da linhagem 4t1. Resultado, gerado pelo One-way ANOVA, do Valor de P e a significância do experimento.

ANOVA summary	
Valor de P.	< 0,0001
Resumo do valor de P.	****
Há diferenças estatisticamente significantes entre os meios? (P < 0.05)	Sim

Anexo 5: Resultado, gerado pelo One-way, do Teste multiplo de Dunnett e a significância do experimento.

Teste de múltipla comparação	Diferença	Diferença do 95%	É	Resumo
de Dunnett	media	de IC	significante?	
C.N. vs. M.C. 1:4	36328	24006 para 48651	Sim	****
C.N. vs. M.C. 1:8	27558	15236 para 39881	Sim	****
C.N. vs. M.C. 1:16	23752	11429 para 36074	Sim	****
C.N. vs. M.C. 1:32	27980	15657 para 40302	Sim	****
C.N. vs. M.C. 1:64	26119	13797 para 38441	Sim	****
C.N. vs. M.C. 1:128	31346	19024 para 43669	Sim	****
C.N. vs. M.C. 1:256	43401	31078 para 55723	Sim	****
C.N. vs. E.O. 1:8	68107	55785 para 80429	Sim	****
C.N. vs. E.O. 1:16	54855	42532 para 67177	Sim	****
C.N. vs. E.O. 1:32	44593	32271 para 56915	Sim	****
C.N. vs. E.O. 1:64	43078	30755 para 55400	Sim	****
C.N. vs. E.O. 1:128	37269	24946 para 49591	Sim	****
C.N. vs. E.O. 1:256	34351	22028 para 46673	Sim	****
C.N. vs. E.O. 1:512	28062	14285 para 41839	Sim	****
C.N. vs. E.O. 1:1024	28805	16483 para 41127	Sim	****
C.N. vs. Br-51 1:8	71987	59665 para 84310	Sim	****
C.N. vs. Br-51 1:16	62078	49756 para 74400	Sim	****
C.N. vs. Br-51 1:32	53270	40948 para 65593	Sim	****
C.N. vs. Br-51 1:64	46521	34198 para 58843	Sim	****
C.N. vs. Br-51 1:128	42698	30376 para 55020	Sim	****
C.N. vs. Br-51 1:256	35826	23504 para 48148	Sim	****
C.N. vs. Br-51 1:512	32472	20150 para 44795	Sim	****
C.N. vs. Br-51 1:1024	33804	21481 para 46126	Sim	****
C.N. vs. C.N.	-5745	-18067 para 6578	Não	ns
C.N. vs. C.N.	8011	-4311 para 20333	Não	ns
C.N. vs. C.N.	4828	-7495 para 17150	Não	ns
C.N. vs. C.N.	-4168	-16490 para 8155	Não	ns
C.N. vs. C.P.	70948	58626 para 83271	Sim	***
C.N. vs. C.P.	71699	59377 para 84022	Sim	****
C.N. vs. C.P.	70103	57780 para 82425	Sim	****

Anexo 6: Quadro da análise morfológica das células 4T1 mediante aos extratos iniciais.

Extrato e Triplicata	Concentração 1:1	Concentração 1:2	Concentração 1:4
E.O. (1)	+++	+++	+++
E.O. (2)	+++	+++	++
E.O. (3)	+++	++	++
M.C. (1)	+++	++	+
M.C. (2)	+++	++	+
M.C. (3)	+++	++	+
BR-51 (1)	+++	+++	+++
BR-51 (2)	+++	+++	+++
BR-51(3)	+++	+++	+++
C.N. (1)	+	+	+
C.N. (2)	+	+	+
C.N. (3)	+	+	+

⁽¹⁻³⁾ Numeração da triplicata

Anexo 7: Quadro da análise de luminescência, pós-teste citotóxico.

Poços e	Dilui	Ensaio	Media de	Ensaio	Media	Media da	% de
Extratos	ção	sem lise	células	com lise	todas	viabilidad	células
	1:		mortas	(Digitonin	celulas	e celular	mortas
)	mortas		
A01 – M.C.	4	Ensaio	12103	Ensaio	53217	41113	45%
		sem lise		com lise			
A02 - M.C.	4	Ensaio	11300	Ensaio	54543	43243	41%
		sem lise		com lise			
A03 - M.C.	4	Ensaio	11860	Ensaio	56117	44257	42%
		sem lise		com lise			
A04 - M.C.	8	Ensaio	11197	Ensaio	67178	55982	33%
		sem lise		com lise			
A05 - M.C.	8	Ensaio	10090	Ensaio	55053	44963	37%
		sem lise		com lise			
A06 - M.C.	8	Ensaio	10677	Ensaio	64655	53978	33%
		sem lise		com lise		_	
A07 - M.C.	16	Ensaio	9720	Ensaio	71097	61377	27%
		sem lise		com lise			

⁽⁺⁾ Pouca alteração observada,

⁽⁺⁺⁾ média alteração observada;

⁽⁺⁺⁺⁾ Muita alteração observada.

A08 - M.C.	16	Ensaio	9880	Ensaio	56513	46633	35%
		sem lise		com lise			
A09 - M.C.	16	Ensaio	9967	Ensaio	68300	58333	29%
		sem lise		com lise			
A10 - M.C.	32	Ensaio	8763	Ensaio	61738	52975	28%
		sem lise		com lise			
A11 - M.C.	32	Ensaio	8683	Ensaio	58740	50057	30%
		sem lise		com lise			
A12 - M.C.	32	Ensaio	9267	Ensaio	59893	50627	31%
		sem lise		com lise			
B01 - M.C.	64	Ensaio	9777	Ensaio	61010	51233	32%
		sem lise		com lise			
B02 - M.C.	64	Ensaio	9553	Ensaio	64298	54745	30%
		sem lise		com lise			
B03 - M.C.	64	Ensaio	8927	Ensaio	62190	53263	29%
		sem lise		com lise			
B04 - M.C.	128	Ensaio	10163	Ensaio	50350	40187	40%
		sem lise		com lise			
B05 - M.C.	128	Ensaio	9800	Ensaio	65665	55865	30%
		sem lise		com lise			
B06 - M.C.	128	Ensaio	9500	Ensaio	57007	47507	33%
		sem lise		com lise			
B07 - M.C.	256	Ensaio	6923	Ensaio	47637	40713	29%
		sem lise		com lise			
B08- M.C.	256	Ensaio	6203	Ensaio	44613	38410	28%
		sem lise		com lise			
B09 - M.C.	256	Ensaio	6760	Ensaio	35033	28273	39%
		sem lise		com lise			
B10 – E.O.	8	Ensaio	4447	Ensaio	15943	11497	56%
		sem lise		com lise			
B11- E.O.	8	Ensaio	4060	Ensaio	14517	10457	56%
		sem lise		com lise			
B12- E.O.	8	Ensaio	4223	Ensaio	15547	11323	54%
		sem lise		com lise			
C01- E.O.	16	Ensaio	5577	Ensaio	29543	23967	38%
		sem lise		com lise			
C02- E.O.	16	Ensaio	6423	Ensaio	31090	24667	41%
		sem lise		com lise			
C03- E.O.	16	Ensaio	6370	Ensaio	30770	24400	41%
		sem lise		com lise			
C04- E.O.	32	Ensaio	7860	Ensaio	43780	35920	36%
		sem lise		com lise			
C05- E.O.	32	Ensaio	8097	Ensaio	42823	34727	38%
		sem lise		com lise			
C06- E.O.	32	Ensaio	7343	Ensaio	40515	33172	36%
	<u> </u>	sem lise		com lise			
C07- E.O.	64	Ensaio	7970	Ensaio	45728	37758	35%
		sem lise		com lise			
C08- E.O.	64	Ensaio	8587	Ensaio	42633	34047	40%
		sem lise	<u> </u>	com lise	<u> </u>		

C09- E.O.	64	Ensaio	8253	Ensaio	44813	36560	37%
		sem lise		com lise			
C10- E.O.	128	Ensaio	9010	Ensaio	52910	43900	34%
		sem lise		com lise			
C11- E.O.	128	Ensaio	8333	Ensaio	52003	43670	32%
		sem lise		com lise			
C12- E.O.	128	Ensaio	8480	Ensaio	46702	38222	36%
		sem lise		com lise			
D01- E.O.	256	Ensaio	9330	Ensaio	50603	41273	37%
		sem lise		com lise			
D02- E.O.	256	Ensaio	8900	Ensaio	56723	47823	31%
		sem lise		com lise			
D03- E.O.	256	Ensaio	8833	Ensaio	54283	45450	33%
		sem lise		com lise			
D04- E.O.	512	Ensaio	9987	Ensaio	17053	7067	117%
		sem lise		com lise			
D05- E.O.	512	Ensaio	10230	Ensaio	60703	50473	34%
		sem lise		com lise			
D06- E.O.	512	Ensaio	10420	Ensaio	62222	51802	33%
		sem lise		com lise			
D07- E.O.	1024	Ensaio	10007	Ensaio	63020	53013	32%
		sem lise		com lise			
D08- E.O.	1024	Ensaio	9953	Ensaio	66123	56170	30%
		sem lise		com lise			
D09 - E.O.	1024	Ensaio	9267	Ensaio	51267	42000	36%
		sem lise		com lise			
D10 -BR-51	8	Ensaio	3843	Ensaio	11453	7610	67%
		sem lise		com lise			
D11 - BR-51	8	Ensaio	3723	Ensaio	10587	6863	70%
		sem lise		com lise			
D12 - BR-51	8	Ensaio	3737	Ensaio	10900	7163	69%
		sem lise		com lise			
E01 - BR-51	16	Ensaio	6440	Ensaio	24567	18127	52%
		sem lise		com lise			
E02 - BR-51	16	Ensaio	6007	Ensaio	22167	16160	54%
		sem lise		com lise			
E03- BR-51	16	Ensaio	6107	Ensaio	23183	17077	53%
		sem lise		com lise			
E04- BR-51	32	Ensaio	8250	Ensaio	34113	25863	48%
		sem lise		com lise			
E05- BR-51	32	Ensaio	8820	Ensaio	34597	25777	51%
		sem lise		com lise			
E06- BR-51	32	Ensaio	9163	Ensaio	35310	26147	52%
		sem lise	<u> </u>	com lise			
E07- BR-51	64	Ensaio	9393	Ensaio	42688	33295	44%
		sem lise		com lise			
E08- BR-51	64	Ensaio	9407	Ensaio	41900	32493	45%
		sem lise		com lise			
E09- BR-51	64	Ensaio	10230	Ensaio	42478	32248	48%
		sem lise		com lise			

E10- BR-51	128	Ensaio	9170	Ensaio	46357	37187	40%
		sem lise		com lise			
E11- BR-51	128	Ensaio	8277	Ensaio	39813	31537	42%
		sem lise		com lise			
E12- BR-51	128	Ensaio	8690	Ensaio	49470	40780	35%
		sem lise		com lise			
F01- BR-51	256	Ensaio	10353	Ensaio	51693	41340	40%
		sem lise		com lise			
F02- BR-51	256	Ensaio	10197	Ensaio	54497	44300	37%
		sem lise		com lise			
F03- BR-51	256	Ensaio	10700	Ensaio	55180	44480	39%
		sem lise		com lise			
F04- BR-51	512	Ensaio	11080	Ensaio	53850	42770	41%
		sem lise		com lise			
F05- BR-51	512	Ensaio	10437	Ensaio	57040	46603	37%
		sem lise		com lise			
F06- BR-51	512	Ensaio	10480	Ensaio	61288	50808	34%
		sem lise		com lise			
F07- BR-51	1024	Ensaio	10197	Ensaio	51307	41110	40%
		sem lise		com lise			
F08- BR-51	1024	Ensaio	10563	Ensaio	58380	47817	36%
		sem lise		com lise			
F09- BR-51	1024	Ensaio	11190	Ensaio	58450	47260	38%
		sem lise		com lise			
F10	C.N.	Ensaio	26110	Ensaio	98550	72440	53%
		sem lise		com lise			
F11	C.N.	Ensaio	24340	Ensaio	106520	82180	46%
		sem lise		com lise			
F12	C.N.	Ensaio	24987	Ensaio	107965	82978	46%
		sem lise		com lise			
G01	C.N.	Ensaio	25590	Ensaio	106650	81060	48%
		sem lise		com lise			
G02	C.N.	Ensaio	24810	Ensaio	110392	85582	45%
		sem lise		com lise			
G03	C.N.	Ensaio	26073	Ensaio	114263	88190	46%
		sem lise		com lise			
G04	C.N.	Ensaio	27540	Ensaio	108287	80747	51%
		sem lise		com lise			
G05	C.N.	Ensaio	25913	Ensaio	85367	59453	61%
		sem lise		com lise			
G06	C.N.	Ensaio	25727	Ensaio	99092	73365	52%
		sem lise		com lise			
G07	C.N.	Ensaio	26007	Ensaio	103265	77258	50%
		sem lise		com lise			
G08	C.N.	Ensaio	26033	Ensaio	107490	81457	48%
		sem lise		com lise			
G09	C.N.	Ensaio	23807	Ensaio	88207	64400	54%
		sem lise		com lise			
G10	C.N.	Ensaio	25553	Ensaio	114117	88563	45%
		sem lise	1	com lise			

G11	C.N.	Ensaio sem lise	26787	Ensaio com lise	117620	90833	46%
G12	C.N.	Ensaio sem lise	25493	Ensaio com lise	96198	70705	53%
H01	C.P.	Ensaio sem lise	8527	Ensaio com lise	17350	8823	98%
H02	C.P.	Ensaio sem lise	8707	Ensaio com lise	16820	8113	104%
H03	C.P.	Ensaio sem lise	8757	Ensaio com lise	16573	7817	106%
H04	C.P.	Ensaio sem lise	9173	Ensaio com lise	16583	7410	111%
H05	C.P.	Ensaio sem lise	9417	Ensaio com lise	17010	7593	111%
H06	C.P.	Ensaio sem lise	8903	Ensaio com lise	16400	7497	109%
H07	C.P.	Ensaio sem lise	9547	Ensaio com lise	18117	8570	105%
H08	C.P.	Ensaio sem lise	9277	Ensaio com lise	16907	7630	110%
H09	C.P.	Ensaio sem lise	8557	Ensaio com lise	19647	11090	87%